
U.S. DEPARTMENT OF COMMERCE
NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION

NATIONAL WEATHER SERVICE 
NATIONAL METEOROLOGICAL CENTER

OFFICE NOTE 148

NMC's Rotating Patitioned Dataset Scheme

Peter Chase
Automation Division

JUNE 1977

This is an unreviewed manuscript, primarily
intended for informal exchange of information
among NMC staff members.



S_ ~~NMC's Rotating Partitioned Dataset Scheme

Peter Chase
Automation Division

June 1977

Why a rotating partitioned dataset?

It may happen that one program is reading the file that a
second program is simultaneously rewriting.

This is known as a race condition, because the results depend
upon which program wins the race.

In IBM's Operating System (OS) there are techniques for preven-
ting interference among programs running on the same machine.
However, IBM's Asymmetric Multiprocessing System (ASP) has no
provision whatsoever for preventing interference among programs
running on different machines in the same system.

The rotating partitioned dataset scheme solves the interference
problem in the case where there is only one program at a time
which rewrites files. It also solves the problem of avoiding._ compressing the partitioned dataset (PDS) when it runs out of
space.

The scheme described below could have been implemented using
several datasets instead of one PDS by modifying the disk
volume table of contents (VTOC) instead of the PDS directory.
However, it was felt safer to leave the VTOC alone.

How does it work?

The PDS is initialized with a fixed set of membernames and a
set of interchangeable data spaces. There may well be more
membernames than spaces: the extra membernames point to a
special empty data space.

There is a particular membername called NEXT which never points
to an empty data space. The updating programs always write in
NEXT. Following this, the updating programs swap data spaces
around among the membernames so that the following results are
achieved:



-2 -

(1) A current name (call it curnam) now points to the
rewritten data space previously pointed to by NEXT.

(2) A previous name (call it prvnam) now points to the
data space previously pointed to by curnam.

(3) NEXT now points to some re-useable space.

(4) A membername CURRENT is an alias for curnam.

If a retrieving program was in the process of reading curnam,
it can continue to do so since the associated data space has
not been over-written. It has only been renamed prvnam.

If a retrieving program had not opened its input file to read
curnam at the time the space swap was performed, it will now
read the new contents of curnam.

There is never a dangerous or ambiguous period in this scheme,
for the following reasons:

(1) No membername entry in the PDS directory extends from one
directory block to the next, so that all of the entry gets
simultaneously rewritten.

(2) The membername entries stay in fixed locations (actually
in alphabetical order) in the directory. Therefore there
is no time during the process of updating the directory
when a membername entry would appear other than exactly
once ,

The retrieving programs can all read the data without special
software in the usual fashion:

//ddname DD DSN=full.ualified.dsname(member),DISP=SHR

Permanent and temporary membernames

Certain membernames may be flagged permanent, This means that
their data spaces will never be taken away from them until they
are updated. They will never point to the empty space.



-3

The remaining membernames are temporary. This means that in
time their data spaces will be taken from them to be re-used.
Following this these membernames will point to the empty space,
which contains only an 'ENDOF FILE' block.

The method for choosing which of the temporary membernames will
have its data space taken away is the least-recently-used (LRU)
algorithm. Associated with each temporary membername is an age.
The age is initially zero for a current name and one for a
previous name when that membername is updated. Thereafter, each
time the directory is updated, the age is incremented for all
temporary non-empty membernames. If space is needed, the member-
name with the first gratest age is chosen.

With this method, a data space should remain accessible to any
retrieving program until the second subsequent directory update.

The membernames to be flagged permanent are chosen at the time
the rotating PDS is initialized and never change thereafter.

Rewriting a membername

The updating program rewrites a membername curnam in the follow-
ing fashion:

(1) Using routine W3AK27, he writes all of his blocks of data
in the space pointed to by membername NEXT.

(2) If the end-of-data return has not been reached, he writes
'ENDOF FILE' blocks until it is reached.

(3) He calls W3AK28 to point curnam to this space, to locate
re-useable space for NEXT, and to point prvnam to the space
previously pointed to by curnam,

The process of rewriting in place requires that the blocksize
must be the same for all physical blocks at all times. Therefore
W3AK27 obtains the blocksize from the data control block after
the file has been opened and computes the logical record length
and data length from the blocksize. If a variable format is
used, the block and record descriptor words will be constructed
by W3AK27. Thus the length of the data arrays is fixed and
cannot span more than one record even though the record format
is nominally VS.

Revised 8-4-77



The directory structure

The directory of a PDS is actually a separate file (as is each
member of a PDS) terminated with an end-of-data block. This
directory file has an organization entirely distinct from the
organization of the member files:

-- It is a direct access file.

-- It consists of 256-byte blocks, exactly as many blocks as
are specified in the third coordinate of the SPACE para-
meter on the DD statement that created the PDS.

-- Each block is written with an 8-byte hardware key which is
the same as the last membername in that block. This allows
the particular block you need to be quickly located.

-- The first two bytes in each block contain a count of the
number of active bytes in the block. The count includes
the first two bytes themselves.

-- Entries are of varying size, from 12 bytes up to 76 bytes
long. (We dontt consider pointers here.) All of an entry
is contained on one physical block.

-- Membername entries occur in alphabetical order in the
directory. The last entry in the directory is a fence,
consisting of 8 hexadecimal FF bytes (all one-bits), and
is only 8 bytes long. (The directory, when created,
has this fence as the first and only entry.) There may be
unused directory blocks past the fence.

-- The first entry in each block begins in byte 3. Each entry
has the format shown below.

- The formula for computing the number of bytes in a given
directory entry is as follows:

length = 12 + 2(number of user halfwords)

where the number of user halfwords is in bits 4-8 of the
12th byte of the entry.



PDS Directory Entry Format

Bytes Contents

1-8 Membername from 1 to 8 EBCDIC characters,
left-justified with right blank fill.
Characters may be alphanumeric or national,
but the first character may not be numeric.

9-11 TTR, track and record pointer to beginning
of member space.

12 Flags and counts, as follows:
Bit 1 = 1 if membername is an alias for another name.
Bits 2-3 indicate the presence of pointers. We don't

use pointers, so these bits will be zero.
Bits 4-8 give the number of user halfwords, 0-31. In

this schemer the number will always be 1 or
more.

13-14 The first user halfword, used to control the
rotating PDS scheme:

Bit 1 = 1 if this membername points to the empty space.
Bit 2 = 1 if this membername is permanent; i.e., not

to be aged.
Bits 3-8 are not used.
Bits 9-16 are the age of the membername, 0 to 255 max.

Bytes 1-12 are standard. Bytes 13-14 are especially for the
rotating PDS scheme, Currently there is only one user half-
word and bits 4-8 of byte 12 are 00001.

The software expects to find membernames NEXT and CURRENT in
the directory. In addition, it expects a number of pairs of
names Cxxxxxxx, Pxxxxxxx. These are the current and previous
names, respectively.

-5 -



-6-

Initialization

Initialization of the rotating PDS is accomplished by a program
ROPIN. ROPIN is controlled by input cards, as follows:

Card 1

Columns Contents

(All right-justified integers)

1-10 Number of data spaces to be formatted, not including
the empty space. There must be one data space for
each permanent membername, one data space for NEXT,
and one spare.

11-20 Number of physical blocks in each data space. Note
that all data spaces will be the same size, except
for the empty space which will contain only one
'ENDOF FILEt block.

21-30 Number of bytes of data in each physical block. This
count does not include the block or record descriptor
words for variable record formats; in this case, the
number of bytes of data must be exactly 8 bytes less
than the blocksize, Note that all blocks will be the
same size,

31-+0 Number of directory blocks specified on the SPACE
parameter of the DD statement that created the PDSo

Card 1 will cause data spaces to be preformatted using routines
W3AK10-W3AK15. The following membername cards will initialize
the directory:

Cards 2,,.,,N (N4 200)

Columns Contents

1-8 Membername, 1-8 EBCDIC characters, left-justified
with right blank fill. Characters may be alpha-
numeric or national, but first character may not be
numeric. Names need not be in alphabetic order here.

11 'Tt if this is a permanent membername; that is, not
to be aged!. Permanent membernames keep their data
spaces until they are updated.

Revised 8-4-77



-7-

'T' if name is to be an alias.
for CURRENT.)

(Use once only

There should be membername cards for NEXT, CURRENT, and pairs
of the form Cxxxxxxx, PxxxxXX. For example, suppose that
you want permanent membernames for 0Z, 06Z, 12Z and 18Z data
and temporary membernames for 03Z, 09Z, 15Z and 21Z data. You
might have the following membername cards:

(Note: NEXT is considered permanent.)

(Note: Here are the permanent data
membernames.)

(Note: Here are the temporary data
membernames.)

(Note: For every membername beginning
with 'G' we have a previous membername
beginning with 'P'. They are all
temporary.)

Initially data spaces will be assigned to NEXT and all the
permanent membernames,. If there are any remaining unassigned
data spaces they will be assigned to temporary membernames.
After all the data spaces have been assigned, any remaining
temporary membernames will be pointed to the empty space.

ROPIN may be executed as follows:

// -EXEC PGM=ROPIN
//STEPLIB DD whatever
//FT01FO01 DD (the rotating PDS--it may be created with this DD)
//FT06F001 DD SYSOUT=A
//FT05`F01 DD *

i (control cards)
/*

113

1 1

1

NEXT
CURRENT
C00Z
C06Z
C1 2Z
C1 8Z
C03Z
C09Z
C1 5Z
C21 Z
P00Z
P03Z
P06Z
P09Z
P1 2Z
P1 5Z
P1 8Z
P21 Z

TF
TT
TF
TF
TF
TF
FF
FF
FF
FF
FF
F F
F F
FF
F F
FF
FF
FF



- 8 -

ROPIN uses routines W3AIK29 and W3AK30 to read and write the
directory.

Further information

Further information about these routines may be found in the
writeups for W3AK27, W3AK289 W3AK29 and W3AK30.


